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Complex absorbing potential and Chebyshev propagation scheme
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This work presents a detailed analysis of complex absorbing potentials employed to eliminate reflection or
wrap-around of wave packets at numerical grid boundaries. In particular, a limiting value for the maximum
propagation time step is derived, beyond which the complex potential may introduce massive errors and the
Chebyshev propagation scheme is found to fail.

PACS numbefs): 02.70—c, 73.23.Ad, 73.23.Hk

[. INTRODUCTION large amount in any single time step. This is clearly not the
case for the Chebyshev propagation scheme.
Numerically solving the time-dependent Sotirger The outline of the paper is as follows. Section Il presents

equation often requires large numerical grids to represent th@n analysis of how the complex potential absorbs the wave
system Hamiltonian and the dynamics of its wave functionfunction and why the time step is a critical factor in assuring
This can be prohibitively expensive in terms of computerthis ability. A maximum time stefy, is established, beyond
memory and computational time. Recent advances are fovhich the Chebyshev propagation scheme with the complex
cused on deve|0ping Computation techniques to reduce tH@tentlal is found to fail. Section Il prOVideS numerical evi-
size of the numerical grid to include only the interaction dence that, using a time step less tiap,, the complex
region. One of the ideas is to remove those components dfotential works well with the Chebyshev propagation
the wave function which have left the interaction region andscheme.
are going to propagate further as free waves. By doing so one
can explore the time evolution of the slower components of Il. THEORY
the wave function still under the influence of the interaction
potentials, without the complication arising from the reflec-
tion or wrap-around of the faster components at the grid aP(r,1)
boundaries. [

Methods used to remove the fast components of the wave
function outside the interaction region have varied from us
ing lines of no return, complex optical potentials in the
Hamiltonian, and the split operator Hamiltonigf]. The P(r,t)=exp(— 1Ht) y(r,0), 2)
most attractive of these is the complex absorbing potential,
which absorbs the wave-function components just beforevhere the system Hamiltonigh= — (1/2m) V2+W(r), V()
they reach the grid boundari€®]. The complex potential is is the interaction potential, and is the effective mass of the
easy to implement, requires little extra computation powersystem. Atomic units are used in this paper.
and has been found to be very effective at absorbing the The Chebyshev scheme approximates the exponential
wave packef3]. time propagator by a Chebyshev polynomial expan§gjn

The main drawback of the complex potential is that the v
final wave function cannot be reconstructed. In other words, ~
the absorbed components are effectively lost. It also pro—‘/’(r't)zexq_'(‘S’maer‘S’min)t];0 an(@) n(—1H)%(r,0),
duces artificial reflections, however these can be minimized 3)
due to the freedom in the design of complex potentials. Vari-
ous schemes have been proposed, which vary the shape where&,;, and&,, are the minimum and maximum energy
the absorbing potential and adjust the slope and depth teigenvalues, a,(a)=2J,(a) except for ag(a)=1Jy(a),
reduce reflection while maximizing the absorptiph-7].  J,(«) are the Bessel functions of the first king, are the
These analyses, however, have been carried out only faChebyshev polynomials, and the normalized Hamiltonian is
propagation schemes using short time steps. We found thatfined as
the complex potential introduces massive errors when na-
ively implemented in the Chebyshev propagation scheme ~ 1
[8,9], where arbitrarily large time steps can be used. The H= Enmax— gmm[ZH—fmax—fmm]- )
main problem is the lack of understanding of how the time
step used in the propagation affects the result. Since mogthis propagation scheme propagates the wave function
previous work with complex potentials involved small time #(r,t) for any time stef, and it is often referred to as a long
steps, this problem was not present. It was pointed out byime propagator.
Vibok and Balint-Kurt[4] that the complex potential must The introduction of a complex potential modifies the
act adiabatically, which implies that it must not change by aSchralinger equation

The general Schainger equation is

=My M

‘Wwith solution
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Ap(r,t) The higher-order commutators in the expansion are zero as
Framil i 1U) g(r,t) (5  only constants, which commute with each other, are present.
Equation 9 then becomes

and the solution

Y(r,t)=exp(— VHt—=uUt)¥(r,0). (6)

a . 3
This is no longer a true Schiinger equation, but if applied Xexr{ oM ATt iggt )¢(r,0). (14
correctly, the complex potentidf only absorbs the wave
function incident on it without affecting the wave function at Note that exp¢-1(a/2m) ,t?) is exactly the Taylor expansion
other regions. Following is a discussion of how the complexof ¥(x—1(a/2m)t®y,z,0), so
potential works and then a limit is established for the maxi-

Y(r,t)=exp(—1Ht)exd — (ax+b)t]

2

mum workable time step. (r,t) =exp(— IHt)exp — (ax+b)t]
Using theBaker-Campbell-Hausdorfbrmula[10] a2 a
xexp<|—t3)¢(x—|—t2,y,z,0). (15)
exp(A+B)=exp(A)exp(B) 3m 2m

1 1 From the above solution, it is clear that the wave function
xexp — 5 [AB]+ z[A[A,B]] #(r,t) can blow up rapidly if the time step is too big.
However, ift is chosen such that

1
_g[B,[B,A]]+ ’ (7)

ex | d/ X | t ,y’ , = ( )

over the range of the complex potential, the complex poten-

p(r,t)=exp(— IHt)exp( — ) tial would reduce exponentially the magnitude of the wave
1 1 packet across the complex potential. For simplicity, only the
X ex;{ -1 E[H,L{]t2+g[ﬁ,[ﬁ,z,ﬂ]t3 x dimension was considered, since the other dimensions can

be included trivially. Assuming that the initial wave function
is a Gaussian, i.e(x,0)=(1/y27w)expl[ — (x—xXo)/2w?]
(r,0). (8) +1py(X—Xg)}, then

azt3 2 20
ex |3m | X |2m ,

|
+ UUHIE- -

Since the interaction potenti& and the complex absorbing
potential/ are defined nonzero in different regions, they can

be considered separately. Now consider the noninteraction a 2
region where the complex potentiad is nonzero whiley X—I=—12—Xq
=0. We have o1 oxt| 2 2m
V2w 2w
Y(r,t)=exp(—rHt)exp( —Ut)
X ex —|i[V2 UJt?+ ! [V2,[VZuU]t3 a,
4m ’ 24m? ’ ’ + 1Py X—Iﬁt —Xop
e UV | (0 ©) ! z(X‘XO)Z 2_ 2 e
U, . 0). _ ext — el
6m V27w 2w (2w)? 4m? Pxom
For convenience, the following analysis is carried out using a a7
linear ramp in thex direction as the complex potential de- _ )
fined by Because the timé cannot be complex or negative, the
only viable solution to the inequality E@L6) is
xy) [ax+b, x>—b 10
Ux,y)= . 2m
0 otherwise, t< \/ — VP + 2 In(\2mW) W+ (x—Xo)*= pw?],
whereb is the starting point and is the slope of the complex (18
potential. In this case the commutator relations in @yare, ) o _ .
for any arbitrary functiony which sets a limiting value for the maximum time step. If
' multiple time steps are required to complete a calculation,
[V2 X]¢r=20,1), (1D ¥ (x,0) would be the wave packet of the previous time step
and will generally not be a Gaussian. In other words, its
[X,[%,V2]]=—2[X,d, ] =24, (12 momentum will not be localized arourm, and its position

expectation value will not be,. To overcome this, the above
[V2,[V2x]]y=2[V?d,]p=0. (13)  limit on t can be tightened byi) substitutingpa.x for py.,
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0 il wherelf, anda define the height and the width of the com-
m.0.2 plex potential, and is where the potential starts. Figure 1
o shows the three potentials.

3-0.4 As expected, the maximum time given by Ef8) is de-

S ] pendent on the distance from the complex potential to the

£-0.6) — Linear initial position of the wave packet. If the complex potential

ol 0.8 Gaussian was at infinity, it would have no effect on the local propaga-
’ - Exponential tion of the wave packet and would then allow arbitrarily long
-1 time steps as predicted by E@.8). Note that the maximum

0 5 10 15 20 25 30

time step is not zero even when the wave packet is at the
Grid Point

complex potential. This is attractive from a computation
FIG. 1. Complex potentials used in calculations. point of view, which means that there is always some finite
time step that will produce the results required.
Where gy i the maximum momentum that the numerical, SEEITE S CEEEL USSR SRR SRR L
grid can support, andi) assuming that the wave packet has P piexp

already reached the complex potential, ixes,xy. This pro- ing simple relation:
vides the smallest limit fot, i.e.,

#HE Ar8mE3?
—— Uy ————, (22
Ar+/8m h

N LN Wy 2 2
t< a [VPmaxW™+ 2 In( /2 W)W — PraxW<], ' . _
where E is the translation energy ana is the mass. The

(19) slope of the complex potential is given lay=1{,/Ar. The
starting point for the complex potential is normally very
that should then work for all cases. A
Although this criterion is derived using the linear complex close to the boundary. The choice i can be made such

potential given by Eq(10), it is found to be applicable to that
other types of potentials as well, for example, a Gaussian

[am E3/2
edge and an exponential potential given by B hE =u0=1 Arﬂ (23
Ar+/8m B h
2(x—b)? ,
1 exp( - (—2)) — 11 (20)  provided
a
Ar8mEY4
and T — <1. (24)
a Elimination of 8 gives
—1Upexp 1— , 21
0 p( (x—b)z) G Uy=E5", (25)
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FIG. 2. Propagation of an electron wave packet in free space with the exponential complex potential at the right end of the grid. The
probability functionP(t) = ¢*(x,y,t) #(x,y,t) is plotted in logarithm scale. Flow of timteis left to right and top to bottom with time step
satisfying Eq.(18). The spatial unitsX andy axes are X 1000 a.u.
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FIG. 3. Massive errors are introduced by the complex potential wherlBgno longer holdgsame units as Fig.)2

This is convenient adf, is independent of the width of the to very different results as illustrated in Fig. 3. In this calcu-

complex potentialAr, as long as Eq(24) is satisfied.

Ill. RESULTS AND DISCUSSIONS

lation, the propagation of the wave packet was divided into
eight equally spaced time steps with,;=47.8 fs, which no
longer satisfies Eq(18). As shown, large errors are intro-
duced by the complex potential placed at the right end of the

As an example of implementing the complex absorbingnumerical grid. It is interesting to note that the wave packet
potential in the Chebyshev scheme, we first consider an eleeppears to propagate with little error in the first few time
tron wave packet propagating in free space with the exposteps, even when E@L8) is not held. It is not until the wave

nential complex potential given by EQ1). In this casex,

packet approaches the complex potential that large errors

and p, of the wave packet are well defined at all times andstart to enter the calculations. This is supported by the

thus we can determine a maximum time step by using Eg.
(18), instead of the tighter limit set by E@19). The propa-
gation of the electron is shown in Fig. 2. The initial energy
of the wave packet is arbitrarily chosen as 0.0300 a.u. The
effective mass is taken as 0.0667 a.u. for GaAs. The numeri-
cal grid in use is found to support a maximum momentum of
Pmax=0.0895 a.u. The propagation of the wave packet is
divided into nine equally spaced time steps wifa;=42.5

fs, which satisfies the criterion given by Ed.9).

Figures 2Za)—2(c) shows the wave packet approaching the
edge of the grid space and gradually spreading as it travels.
When it hits the boundary, the wave packet is absorbed by
the complex potential and only a slight reflected wave packet
is observedsee Figs. @)—2(f)]. The magnitude of the wave
packet before the edge of the space and the reflected wave
packet are about 16 and 10 5, respectively. The reflected
wave packet can introduce error into further calculations
when it starts to interact with the slower components of the
wave packet still in the interaction region. However, since
the reflected wave packet is abouf 1nes smaller than the
incident wave packet, this effect is very small.

Despite the small reflection and high accuracy of the
method, we found that the Chebyshev expansion scheme is

very sensitive to the presence of a complex potential. A FIG. 4. (a) Absorption of system energi.u) when Eq.(18) is
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FIG. 5. Propagation of an electron wave packet under the influence of a double barrier with exponential complex potentials at both ends
of the grid. Flow of time is left to right and top to bottom with time step satisfying @§) (same units as Fig.)2

dependence of Eq18) on x—Xg. tem energy diverges when the time step was changed from
Figure 4a) illustrates how well the system energy 42.5 fs to 47.8 fs, as shown in Fig(b}. This corresponds to
Esysten=J ¢ (r, 1) Hyj(r,t)dr is absorbed by the complex po- the large errors introduced to the wave packet by the com-
tentials when Eq(18) holds. For the first five time steps, the plex potential as shown in Fig. 3. Alternatively, we could
system energy is conserved. Then over the following thre@lot the norm of the wave function as a function of time to
time steps the majority of the energy is absorbed by theshow the absorption of flux by complex potentials. Almost
complex potential, leaving only the energy of the reflecteddentical behavior was observed to that shown in Fig. 4.
wave packet. For the linear, Gaussian, and exponential po- Figure 5 illustrates the propagation of an electron wave
tentials, the energy of the reflected wave packet is, respegacket under the influence of a double barrier with complex
tively, about 106, 1078, and 10 *° times smaller than the potentials at both ends of the numerical grid. In this case a
initial system energy. This is very close to complete absorpsmaller grid spacing was adopted which supports a higher
tion. Among the three complex potentials, the exponentiamaximum momentunp,o,=0.171 a.u. Also, sincey, andp,
potential given by Eq(21) appears to cause the least reflec-of the wave packet are not well defined under the influence
tion, which is in agreement with Viloand Balint-Kurti[4]. of the barrier potential, the tighter limit set by EQ.9) was
However, for all three forms of complex potential, the sys-used,t,,,=26.5 fs. As shown in Fig. 5, the reflection due to
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FIG. 6. Absolute errors between the results shown in Fig. 5 and the results obtained without the complex potentials but using a larger
numerical grid(same units as Fig.)2
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the complex potential does not visibly affect the wave-packetion is demonstrated along with the possible errors that it can
propagation in the interaction region. introduce.

To quantify the errors introduced by the complex poten- Finite difference methodgor other short time propaga-
tials, results shown in Fig. 5 were compared with that ob-tors), where small time steps are used, do not suffer from
tained using a much larger numerical grid but without thelarge errors introduced by the complex potential. However,
complex potentials. The absolute errors are plotted in Fig. 6this is not the case for long time propagators such as the
As shown, until the wave packet reaches the complex poter=hebyshev scheme. The total time propagation may need to
tial, the absolute errors are typically below 20 (the mag-  be broken up into several smaller pieces to ensure that the
nitude of the norm was typically 16, resulting in an ap- time step is less than that given by Ed.8). Due to the
proximately relative error of 10°), indicating that the difficulty in evaluating Eq/(18) for each time step, Eq19)
complex boundary does not introduce significant error intccan be used to provide a global maximum time step.
the propagation. Once the wave packet reaches the complex
potential, a slight reflection occurs giving rise to an error ACKNOWLEDGMENTS
about three orders of magnitude smaller than the slower

components of the wave packet still under the influence of Calculations were carried out on a 500 MHz Digital Per-
the interaction potential. sonal Workstation 500 a.u. and a Fujitsu VPP300 Super

Computer. The VPP300 Super Computer time was gener-
ously donated by the Australian National University Super
Computer Facility. We would like to thank Dr. Paul Abbott

The application of a negative complex potential at thefor discussions associated with analyzing the results in
boundary of the numerical grid has been shown to effectively/uATHEMATICA and for providing the reference to tiBaker-
absorb a propagating wave packet. The nature of this absor@ampbell-Hausdorfformula[10].

IV. CONCLUSION
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