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Complex absorbing potential and Chebyshev propagation scheme

S. Midgley and J. B. Wang
Department of Physics, The University of Western Australia, Perth 6907, Australia

~Received 9 February 1999; revised manuscript received 8 July 1999!

This work presents a detailed analysis of complex absorbing potentials employed to eliminate reflection or
wrap-around of wave packets at numerical grid boundaries. In particular, a limiting value for the maximum
propagation time step is derived, beyond which the complex potential may introduce massive errors and the
Chebyshev propagation scheme is found to fail.

PACS number~s!: 02.70.2c, 73.23.Ad, 73.23.Hk
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I. INTRODUCTION

Numerically solving the time-dependent Schro¨dinger
equation often requires large numerical grids to represen
system Hamiltonian and the dynamics of its wave functi
This can be prohibitively expensive in terms of compu
memory and computational time. Recent advances are
cused on developing computation techniques to reduce
size of the numerical grid to include only the interacti
region. One of the ideas is to remove those component
the wave function which have left the interaction region a
are going to propagate further as free waves. By doing so
can explore the time evolution of the slower components
the wave function still under the influence of the interacti
potentials, without the complication arising from the refle
tion or wrap-around of the faster components at the g
boundaries.

Methods used to remove the fast components of the w
function outside the interaction region have varied from
ing lines of no return, complex optical potentials in th
Hamiltonian, and the split operator Hamiltonian@1#. The
most attractive of these is the complex absorbing poten
which absorbs the wave-function components just bef
they reach the grid boundaries@2#. The complex potential is
easy to implement, requires little extra computation pow
and has been found to be very effective at absorbing
wave packet@3#.

The main drawback of the complex potential is that t
final wave function cannot be reconstructed. In other wor
the absorbed components are effectively lost. It also p
duces artificial reflections, however these can be minimi
due to the freedom in the design of complex potentials. V
ous schemes have been proposed, which vary the shap
the absorbing potential and adjust the slope and dept
reduce reflection while maximizing the absorption@4–7#.
These analyses, however, have been carried out only
propagation schemes using short time steps. We found
the complex potential introduces massive errors when
ively implemented in the Chebyshev propagation sche
@8,9#, where arbitrarily large time steps can be used. T
main problem is the lack of understanding of how the tim
step used in the propagation affects the result. Since m
previous work with complex potentials involved small tim
steps, this problem was not present. It was pointed out
Vibok and Balint-Kurt @4# that the complex potential mus
act adiabatically, which implies that it must not change b
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large amount in any single time step. This is clearly not
case for the Chebyshev propagation scheme.

The outline of the paper is as follows. Section II prese
an analysis of how the complex potential absorbs the w
function and why the time step is a critical factor in assuri
this ability. A maximum time steptmax is established, beyond
which the Chebyshev propagation scheme with the comp
potential is found to fail. Section III provides numerical ev
dence that, using a time step less thantmax, the complex
potential works well with the Chebyshev propagati
scheme.

II. THEORY

The general Schro¨dinger equation is

ı
]c~r,t !

]t
5Hc~r,t ! ~1!

with solution

c~r,t !5exp~2ıHt !c~r,0!, ~2!

where the system HamiltonianH52(1/2m)¹21V(r), V(r)
is the interaction potential, andm is the effective mass of the
system. Atomic units are used in this paper.

The Chebyshev scheme approximates the expone
time propagator by a Chebyshev polynomial expansion@8#

c~r,t !5exp@2ı~Emax1Emin!t# (
n50

N
an~a!fn~2ıH̃!c~r,0!,

~3!

whereEmin andEmax are the minimum and maximum energ
eigenvalues, an(a)52Jn(a) except for a0(a)5J0(a),
Jn(a) are the Bessel functions of the first kind,fn are the
Chebyshev polynomials, and the normalized Hamiltonian
defined as

H̃5
1

Emax2Emin
@2H2Emax2Emin#. ~4!

This propagation scheme propagates the wave func
c(r ,t) for any time stept, and it is often referred to as a lon
time propagator.

The introduction of a complex potential modifies th
Schrödinger equation
920 ©2000 The American Physical Society
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ı
]c~r,t !

]t
5~H2ıU!c~r,t ! ~5!

and the solution

c~r,t !5exp~2ıHt2Ut !c~r,0!. ~6!

This is no longer a true Schro¨dinger equation, but if applied
correctly, the complex potentialU only absorbs the wave
function incident on it without affecting the wave function
other regions. Following is a discussion of how the comp
potential works and then a limit is established for the ma
mum workable time step.

Using theBaker-Campbell-Hausdorffformula @10#

exp~A1B!5exp~A!exp~B!

3expS 2
1

2
@A,B#1

1

6
@A,@A,B##

2
1

3
@B,@B,A##1••• D , ~7!

one can expand Eq.~6! as

c~r,t !5exp~2ıHt !exp~2Ut !

3expS 2ı
1

2
@H,U#t21

1

6
@H,@H,U##t3

1
ı

3
@U,@U,H##t3

••• Dc~r,0!. ~8!

Since the interaction potentialV and the complex absorbin
potentialU are defined nonzero in different regions, they c
be considered separately. Now consider the noninterac
region where the complex potentialU is nonzero whileV
50. We have

c~r,t !5exp~2ıHt !exp~2Ut !

3expS 2ı
1

4m
@¹2,U#t21

1

24m2
@¹2,@¹2,U##t3

1
ı

6m
@U,@U,¹2##t3

••• D c~r,0!. ~9!

For convenience, the following analysis is carried out usin
linear ramp in thex direction as the complex potential de
fined by

U~x,y!5H ax1b, x.2b

0 otherwise,
~10!

whereb is the starting point anda is the slope of the complex
potential. In this case the commutator relations in Eq.~9! are,
for any arbitrary functionc,

@¹2,x#c52]xc, ~11!

@x,@x,¹2##c522@x,]x#c52c, ~12!

@¹2,@¹2,x##c52@¹2,]x#c50. ~13!
x
-

n
on

a

The higher-order commutators in the expansion are zero
only constants, which commute with each other, are pres
Equation 9 then becomes

c~r,t !5exp~2ıHt !exp@2~ax1b!t#

3expS 2ı
a

2m
]xt

21ı
a2

3m
t3Dc~r,0!. ~14!

Note that exp(2ı(a/2m)]xt
2
… is exactly the Taylor expansion

of c„x2ı(a/2m)t2,y,z,0…, so

c~r,t !5exp~2ıHt !exp@2~ax1b!t#

3expS ı
a2

3m
t3DcS x2ı

a

2m
t2,y,z,0D . ~15!

From the above solution, it is clear that the wave functi
c(r,t) can blow up rapidly if the time stept is too big.
However, if t is chosen such that

IexpS ı
a2

3m
t3DcS x2ı

a

2m
t2,y,z,0D I<1 ~16!

over the range of the complex potential, the complex pot
tial would reduce exponentially the magnitude of the wa
packet across the complex potential. For simplicity, only
x dimension was considered, since the other dimensions
be included trivially. Assuming that the initial wave functio
is a Gaussian, i.e.,c(x,0)5(1/A2pw)exp$@2(x2x0)

2/2w2#
1ıpx(x2x0)%, then

IexpS ı
a2

3m
t3DcS x2ı

a

2m
t2,0D I

5
1

A2pw
I expF22S x2ı

a

2m
t22x0

2w
D 2

1ıpxS x2ı
a

2m
t22x0D G I

5
1

A2pw
expF22S x2x0

2w D 2

1
2

~2w!2

a2

4m2
t41px

a

2m
t2G .

~17!

Because the timet cannot be complex or negative, th
only viable solution to the inequality Eq.~16! is

t<A2m

a
@Apx

2w412 ln~A2pw!w21~x2x0!22pxw
2#,

~18!

which sets a limiting value for the maximum time step.
multiple time steps are required to complete a calculati
c(x,0) would be the wave packet of the previous time s
and will generally not be a Gaussian. In other words,
momentum will not be localized aroundpx and its position
expectation value will not bex0. To overcome this, the abov
limit on t can be tightened by~i! substitutingpmax for px ,
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922 PRE 61S. MIDGLEY AND J. B. WANG
wherepmax is the maximum momentum that the numeric
grid can support, and~ii ! assuming that the wave packet h
already reached the complex potential, i.e.,x5x0. This pro-
vides the smallest limit fort, i.e.,

t<A2m

a
@Apmax

2 w412 ln~A2pw!w22pmaxw2#,

~19!

that should then work for all cases.
Although this criterion is derived using the linear compl

potential given by Eq.~10!, it is found to be applicable to
other types of potentials as well, for example, a Gauss
edge and an exponential potential given by

ıU0FexpS 2
2~x2b!2

a2 D 21G ~20!

and

2ıU0expS 12
a

~x2b!2D , ~21!

FIG. 1. Complex potentials used in calculations.
l

n

whereU0 anda define the height and the width of the com
plex potential, andb is where the potential starts. Figure
shows the three potentials.

As expected, the maximum time given by Eq.~18! is de-
pendent on the distance from the complex potential to
initial position of the wave packet. If the complex potenti
was at infinity, it would have no effect on the local propag
tion of the wave packet and would then allow arbitrarily lon
time steps as predicted by Eq.~18!. Note that the maximum
time step is not zero even when the wave packet is at
complex potential. This is attractive from a computati
point of view, which means that there is always some fin
time step that will produce the results required.

According to Child@2#, the depthU0 and the widthDr of
the linear ramp complex potential should satisfy the follo
ing simple relation:

\E

DrA8m
!U0!

DrA8mE3/2

\
, ~22!

where E is the translation energy andm is the mass. The
slope of the complex potential is given bya5U0 /Dr . The
starting point for the complex potential is normally ve
close to the boundary. The choice ofU0 can be made such
that

b
\E

DrA8m
5U05

1

b

DrA8mE3/2

\
~23!

provided

b5
DrA8mE1/4

\
!1. ~24!

Elimination of b gives

U05E5/4. ~25!
rid. The
p

FIG. 2. Propagation of an electron wave packet in free space with the exponential complex potential at the right end of the g
probability functionP(t)5c!(x,y,t)c(x,y,t) is plotted in logarithm scale. Flow of timet is left to right and top to bottom with time ste
satisfying Eq.~18!. The spatial units (x andy axes! are31000 a.u.
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FIG. 3. Massive errors are introduced by the complex potential when Eq.~18! no longer holds~same units as Fig. 2!.
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This is convenient asU0 is independent of the width of th
complex potentialDr , as long as Eq.~24! is satisfied.

III. RESULTS AND DISCUSSIONS

As an example of implementing the complex absorb
potential in the Chebyshev scheme, we first consider an e
tron wave packet propagating in free space with the ex
nential complex potential given by Eq.~21!. In this casex0
and px of the wave packet are well defined at all times a
thus we can determine a maximum time step by using
~18!, instead of the tighter limit set by Eq.~19!. The propa-
gation of the electron is shown in Fig. 2. The initial ener
of the wave packet is arbitrarily chosen as 0.0300 a.u.
effective mass is taken as 0.0667 a.u. for GaAs. The num
cal grid in use is found to support a maximum momentum
pmax50.0895 a.u. The propagation of the wave packe
divided into nine equally spaced time steps withtstep542.5
fs, which satisfies the criterion given by Eq.~18!.

Figures 2~a!–2~c! shows the wave packet approaching t
edge of the grid space and gradually spreading as it trav
When it hits the boundary, the wave packet is absorbed
the complex potential and only a slight reflected wave pac
is observed@see Figs. 2~d!–2~f!#. The magnitude of the wave
packet before the edge of the space and the reflected w
packet are about 1026 and 10215, respectively. The reflecte
wave packet can introduce error into further calculatio
when it starts to interact with the slower components of
wave packet still in the interaction region. However, sin
the reflected wave packet is about 109 times smaller than the
incident wave packet, this effect is very small.

Despite the small reflection and high accuracy of
method, we found that the Chebyshev expansion schem
very sensitive to the presence of a complex potential
small change in the time step for each propagation gave
g
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to very different results as illustrated in Fig. 3. In this calc
lation, the propagation of the wave packet was divided i
eight equally spaced time steps withtstep547.8 fs, which no
longer satisfies Eq.~18!. As shown, large errors are intro
duced by the complex potential placed at the right end of
numerical grid. It is interesting to note that the wave pac
appears to propagate with little error in the first few tim
steps, even when Eq.~18! is not held. It is not until the wave
packet approaches the complex potential that large er
start to enter the calculations. This is supported by

FIG. 4. ~a! Absorption of system energy~a.u.! when Eq.~18! is
satisfied;~b! energy~a.u.! diverges otherwise.
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FIG. 5. Propagation of an electron wave packet under the influence of a double barrier with exponential complex potentials at b
of the grid. Flow of time is left to right and top to bottom with time step satisfying Eq.~19! ~same units as Fig. 2!.
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dependence of Eq.~18! on x2x0.
Figure 4~a! illustrates how well the system energ

Esystem5*c!(r,t)Hc(r,t)dr is absorbed by the complex po
tentials when Eq.~18! holds. For the first five time steps, th
system energy is conserved. Then over the following th
time steps the majority of the energy is absorbed by
complex potential, leaving only the energy of the reflec
wave packet. For the linear, Gaussian, and exponential
tentials, the energy of the reflected wave packet is, res
tively, about 1026, 1028, and 10210 times smaller than the
initial system energy. This is very close to complete abso
tion. Among the three complex potentials, the exponen
potential given by Eq.~21! appears to cause the least refle
tion, which is in agreement with Vibo´k and Balint-Kurti@4#.
However, for all three forms of complex potential, the sy
e
e
d
o-
c-

-
l

-

-

tem energy diverges when the time step was changed f
42.5 fs to 47.8 fs, as shown in Fig. 4~b!. This corresponds to
the large errors introduced to the wave packet by the co
plex potential as shown in Fig. 3. Alternatively, we cou
plot the norm of the wave function as a function of time
show the absorption of flux by complex potentials. Almo
identical behavior was observed to that shown in Fig. 4.

Figure 5 illustrates the propagation of an electron wa
packet under the influence of a double barrier with comp
potentials at both ends of the numerical grid. In this cas
smaller grid spacing was adopted which supports a hig
maximum momentumpmax50.171 a.u. Also, sincex0 andpx
of the wave packet are not well defined under the influe
of the barrier potential, the tighter limit set by Eq.~19! was
used,tmax526.5 fs. As shown in Fig. 5, the reflection due
a larger
FIG. 6. Absolute errors between the results shown in Fig. 5 and the results obtained without the complex potentials but using
numerical grid~same units as Fig. 2!.
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PRE 61 925COMPLEX ABSORBING POTENTIAL AND CHEBYSHEV . . .
the complex potential does not visibly affect the wave-pac
propagation in the interaction region.

To quantify the errors introduced by the complex pote
tials, results shown in Fig. 5 were compared with that o
tained using a much larger numerical grid but without t
complex potentials. The absolute errors are plotted in Fig
As shown, until the wave packet reaches the complex po
tial, the absolute errors are typically below 10215 ~the mag-
nitude of the norm was typically 1026, resulting in an ap-
proximately relative error of 1029), indicating that the
complex boundary does not introduce significant error i
the propagation. Once the wave packet reaches the com
potential, a slight reflection occurs giving rise to an er
about three orders of magnitude smaller than the slo
components of the wave packet still under the influence
the interaction potential.

IV. CONCLUSION

The application of a negative complex potential at t
boundary of the numerical grid has been shown to effectiv
absorb a propagating wave packet. The nature of this abs
hy
t

-
-

6.
n-

o
lex
r
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f

ly
rp-

tion is demonstrated along with the possible errors that it
introduce.

Finite difference methods~or other short time propaga
tors!, where small time steps are used, do not suffer fr
large errors introduced by the complex potential. Howev
this is not the case for long time propagators such as
Chebyshev scheme. The total time propagation may nee
be broken up into several smaller pieces to ensure that
time step is less than that given by Eq.~18!. Due to the
difficulty in evaluating Eq.~18! for each time step, Eq.~19!
can be used to provide a global maximum time step.
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@4# A. Vibók and G. Balint-Kurt, J. Chem. Phys.96, 7615~1992!.
@5# D. Macı́as, S. Brouard, and J. Muga, Chem. Phys. Lett.228,

672 ~1994!.
, @6# U. Riss and H.-D. Meyer, J. Phys. B28, 1475~1995!.
@7# T. Seideman and W. Miller, J. Chem. Phys.96, 4412~1991!.
@8# H. Tal-Ezer and R. Kosloff, J. Chem. Phys.81, 3967~1984!.
@9# J. B. Wang and T. Scholz, Phys. Rev. A57, 3554~1998!.

@10# J.-M. Normand,A Lie Group: Rotations in Quantum Mechan
ics ~North-Holland, Amsterdam, 1980!.


